Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
J Math Biol ; 87(1): 6, 2023 06 12.
Article in English | MEDLINE | ID: covidwho-20241939

ABSTRACT

The opportunistic fungus Aspergillus fumigatus infects the lungs of immunocompromised hosts, including patients undergoing chemotherapy or organ transplantation. More recently however, immunocompetent patients with severe SARS-CoV2 have been reported to be affected by COVID-19 Associated Pulmonary Aspergillosis (CAPA), in the absence of the conventional risk factors for invasive aspergillosis. This paper explores the hypothesis that contributing causes are the destruction of the lung epithelium permitting colonization by opportunistic pathogens. At the same time, the exhaustion of the immune system, characterized by cytokine storms, apoptosis, and depletion of leukocytes may hinder the response to A. fumigatus infection. The combination of these factors may explain the onset of invasive aspergillosis in immunocompetent patients. We used a previously published computational model of the innate immune response to infection with Aspergillus fumigatus. Variation of model parameters was used to create a virtual patient population. A simulation study of this virtual patient population to test potential causes for co-infection in immunocompetent patients. The two most important factors determining the likelihood of CAPA were the inherent virulence of the fungus and the effectiveness of the neutrophil population, as measured by granule half-life and ability to kill fungal cells. Varying these parameters across the virtual patient population generated a realistic distribution of CAPA phenotypes observed in the literature. Computational models are an effective tool for hypothesis generation. Varying model parameters can be used to create a virtual patient population for identifying candidate mechanisms for phenomena observed in actual patient populations.


Subject(s)
Aspergillosis , COVID-19 , Pulmonary Aspergillosis , Humans , RNA, Viral , SARS-CoV-2 , Cohort Studies
2.
Journal of Clinical and Translational Science ; 7(s1):1, 2023.
Article in English | ProQuest Central | ID: covidwho-2303911

ABSTRACT

OBJECTIVES/GOALS: Analysis and modeling of large, complex clinical data remain challenging despite modern advances in biomedical informatics. We aim to explore the potential of topological data analysis (TDA) to address such challenges in the context of COVID-19 outcomes using electronic health records (EHRs). METHODS/STUDY POPULATION: In this work, we develop TDA approaches to characterize subtypes and predict outcomes in patients with COVID-19 infection. First, data for >70,000 COVID-19 patients were extracted from the OneFlorida EHR database. Next, enhancements to the TDA algorithm Mapper were designed and implemented to adapt the technique to this type of data. Clinical variables, including patient demographics, vital signs, and lab values, were then used as input to conduct a population-level exploratory analysis with an emphasis on identifying phenotypic subtypes at increased risk of adverse outcomes such as major adverse cardiovascular events (MACE), mechanical ventilation, and death. RESULTS/ANTICIPATED RESULTS: Preliminary Mapper experiments have produced visual representations of the COVID-19 patient population that are well-suited to exploratory analysis. Such visualizations facilitate easy identification of phenotypic subnetworks that differ from the general population in terms of baseline variables or clinical outcomes. In this and subsequent work, we aim to fully characterize and quantify differences between these subnetworks to identify factors that may confer increased risk (or protection from) adverse outcomes. We also plan to validate and rigorously compare the efficacy of this TDA-based approach to common alternatives such as clustering, principal component analysis, and machine learning. DISCUSSION/SIGNIFICANCE: This work demonstrates the potential utility of TDA for the characterization of complex biomedical data. Mapper provides a novel means of exploring EHR data, which are otherwise difficult to visualize and can aid in identifying or characterizing patient subtypes in diseases such as COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL